Basic Forms Z xndx = 1 n+ 1 xn+1 (1) Z 1 x dx= lnjxj (2) Z udv= uv Z vdu (3) Z 1 ax+ b dx= 1 a lnjax+ bj (4) Integrals of Rational Functions Z 1 (x+ a)2. dx= ln( 1 x+ a (5) Z (x+ a)ndx= (x+ a)n+1. Evaluate the following de nite integrals: 46. Z 1 0 2xdx 47. Z 7 2 3dv 48. Z 0 1 (x 2)dx 49. Z 5 2 ( 3v+4)dv 50. Z 1 1 (t2 2)dt 51. Z 3 0 (3x2 +x 2)dx 52. Z 1 0 (2t 1)2 dt 53. Z 1 1 (t3 9t)dt 54. Z 2 1 3 x2 1 dx 55. Z 1 2 u 1 u2 du 56. Z 4 1 u 2 p u du 57. Z 3 3 v1=3 dv 58. Z 1 1 (3 p t 2)dt 59. Z 8 1 r 2 x dx 60. Z 1 0 x p x 3 dx 61. Z 2 0 (2 ...

formula, we find that sec3x dx sec x tan x + J sec x dx = sec x tan x + In Isec x + tan xl + C. In the last step we used Equation (15) of Section 8.2, sec x dx = Inlsec x + tan xl + C. The reason for using the reduction formula in (5) is that repeated applica- tion must yield one of the two elementary integrals sec x dx and sec2 x dx. Integrals 5. Applications of Integration ... Antiderivative(Integral) Formulas . 9 Miami Dade College -- Hialeah Campus Antiderivatives of = Indefinite Integral is ...